Wind/disk Connection in Young Stars of Intermediate Masses
نویسندگان
چکیده
The AMBER instrument installed at the Very Large Telescope (VLT) combines three beams from as many telescopes to produce spectrally dispersed fringes with milli-arcsecond angular scales in the near infrared. Two years after installation, first scientific observations have been carried out during the Science Demonstration Time and the Guaranteed Time mostly on bright sources due to some VLTI limitations. In this paper, we review these first astrophysical results and we show which types of completely new information is made available by AMBER. The first astrophysical results have been mainly focusing on stellar wind structure, kinematics, and its interaction with dust usually concentrated in a disk. Because AMBER has dramatically increased the number of measures per baseline, this instrument brings strong constraints on morphology and models despite a relatively poor (u, v) coverage for each object.
منابع مشابه
Winds and Accretion in Young Stars
Establishing the origin of accretion powered winds from forming stars is critical for understanding angular momentum evolution in the star-disk interaction region. Here, the high velocity component of accretion powered winds is launched and accreting stars are spun down, in defiance of the expected spin-up during magnetospheric accretion. T Tauri stars in the final stage of disk accretion offer...
متن کاملDISCOVERY OF A CANDIDATE PROTOPLANETARY DISK AROUND THE EMBEDDED SOURCE IRc9 IN ORION
We report the detection of spatially-extended mid-infrared emission around the luminous embedded star IRc9 in OMC-1, as seen in 8.8, 11.7, and 18.3 μm images obtained with T-ReCS on Gemini South. The extended emission is asymmetric, and the morphology is reminiscent of warm dust disks around other young stars. The putative disk has a radius of roughly 1. 5 (700 AU), and a likely dust mass of al...
متن کاملThe influence of the magnetic field orientation on the angular momentum loss in the pre-main sequence phase: the case of very slowly rotating magnetic Ap stars
Landstreet & Mathys (2000) have discovered that almost all the magnetic Ap stars having rotation periods longer than about one month have their magnetic and rotation axes fairly closely aligned, in contrast to the more common magnetic Ap stars of shorter period, in which the two axes are usually inclined to one another at a large angle. Furthermore, as shown earlier by Mathys et al. (1997) and ...
متن کاملInterferometric science results on young stellar objects
Long-baseline interferometry at infrared wavelengths allows the innermost regions around young stars to be observed. These observations directly probe the location of the dust and gas in the disks. The characteristic sizes of these regions found are larger than previously thought. These results have motivated in part a new class of models of the inner disk structure, but the precise understandi...
متن کاملPhotoevaporation of protostellar disks III. The appearance of photoevaporating disks around young intermediate mass stars
We present theoretical continuum emission spectra (SED’s), isophotal maps and line profiles for several models of photoevaporating disks at different orientations with respect to the observer. The hydrodynamic evolution of these models has been the topic of the two previous papers of this series. We discuss in detail the numerical scheme used for these diagnostic radiation transfer calculations...
متن کامل